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Abstract

Decoding procedures are formulated, and their performance
established, for products of binary group codes of even

minimal weight and for Hobbs' codes of any dimension.
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Intcoduction

In our effort to discover decoding procedures for Kautz codes K; R
we have found ome for the particular class of Hobbs' codes K‘s , based on
the product structure of these codes. OQur procedure cannot, then, be
immediately extended to codes K; , sirce these are not necessarily
products, if ¥ » ] ; but it was easy to deduce decoding rules for arbitrary
products AB (somehow related to consideratioms of [1]). These are set
forth and studied in Chapter I below, where we have restricted ourselves
to consider factor codes A, B for which our decoding procedure has
substantial performance. More specifically we consider only binary group

codes for which the minimal weight is even.

In Chapter II we formulate and study the decoding rules for Hobbs'
codes. Although the results of this chapter are related to those of

Chapter I, we have preferred to give many independent proofs.

For any code A we shall denote by w(A) the minimal weight of its
elements, by €(A) its packing integer (in our case R €A)+2 = cr(A) )
and by w(A) the length of its sequences. Further, b{(A) will denote the
maximal length of correctable bursts: a burst is correctable if it is
the only coset leader or if it is the shortest burst among the possible
coset leaders. Similarly b(_CA) will denote the maximal length of
correctable cyclic bursts; the length of a sequence (xl, NP X,,,)
considered as a cyclic burst being defined as follows: min (- jui) for

all integers (%) such that x; =%, =/ but X, =0 if Leh =) .

iii
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Chapter I The Product of Two Codes

1. HNotations and Assumptions

If A and B are two codes, we denote by AB their product, that is

the code whose elements are sequences (X,“ Xiz) Xiay o0y Xm(”, Xu).,.} Xn(,«)hca))
of N(AB)=nA)n(B) terms X;; such that, for any fixed ¢
CXZ;/) Kiz s oo, Xin(sJ) is an element of B and, for any fixed j ,

(X5, %55 ) chAJJ) is an element of A (see [2], [3], [4], [5]). We

can clearly represent the elements of AB as matrices with wn(A) rows

2

(Xep, Xeny v oo, X"”(,s)) and h(B) columns (X,;,ij) cors Xnaay; ) . For
fixed ( , the collection of the L'H’ rows of alil the elements of AB
form a group, hence a code, denoted B, : it is obviously isomorphic

to B. Similarly /}J will denote the code of all the j“’ possible columns.

We assume to have decoding rules for A [and for B] to correct all
configurations with not more than €{A) [and €(B) ] errors, all bursts of
length not more than b(A) [and b(B) ] and all cyclic bursts of length

not more than L:C(A) [and bc_(B) ]. Notice that, even if c(A):lo(A):bc(A)—:O)
we will always be able to detect the presence of one error, since .~(4)

is assumed even. Similarly for B. Also, since the A; are isomorphic

to A, all our assumptions apply as well to each one of them, Similarly

for the codes B, , isomorphic to B.

In the following we shall say that an error configuration in A‘;
is correctable if and only if the number of errors is < e (A) , or the
configuration is a burst of length % b(A) , or a cyclic burst of length

< bc_(A) . 8imilarly for B .

2. The Decoding Rules for AB

The decoding proceeds in two major steps. The first consisgts
in applying, when appropriate, the decoding rules for A to the H(B)
*columns' Aj and in keeping track of the work performed using a numerical

function denoted Aa, . The second step applies the decoding rules for
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B to the w(A) "rows" B, obtained after the corrections required by
Step I.

In precise details:

Step I For Jd= L, 2 ,..)n(B):‘

7

.

o(3> no errors are deterted in 4j : set x?‘(j) = 0.

[55) A>6 errors are detected in A} and they form a
correctable configuration: correct them and set 7(‘1') =L.

Xt) errors are detected in /45 and they form a configuration

which is not correctable: set ?(J) = -/

Step II In the matrix obtained after application of Step I:
04) no errors are detected in any B; , (= o, s, ”(ﬂ)iaccept.
ﬂ) /é'r>o errors are detected in B; , r=1/2,,., £ and they
form a correctable configuration for (=1/2,.,., o4 with o= ¢!
1) if of=§ , correct in each BJ‘. and accept;
2) if g, let ., ..., Je& be all the integers
such that ?(J) =-/ and, if T=e(B)+/-0 S0,

let .2 £ 7; be such that 7(&)},;0) for all

1> P,

) # {,)fz)..,) ffc'/' then if /= «(B) + | [OY r+T :'C(B),ﬁ-/])

correct the errors in B,,l’ Be,, .\, -Bc:‘,‘ and change

all the terms xtr,'/, X"»-Jz""’ X"';- i and ):Xgr,g/ 5 X,;‘_,gl,.,.J X‘;'_,e?]
for v = op/, olt2,,,, p and accept.
)") in all other cases, reject.

To "change" X;;

modulo 2. It is important to emphasize that the checking equations for

means to substitute it with X; +/ , the sum being

the rows of the received matrix need be computed only after having
performed Step I. The function - plays an important role in Step II /3)
2), whose formal statement is somewhat complicated. Notice that if

0= e(®)+/| , there is no need to search for the integers i,,

o) e
at which assumes its larger values; and if 02 e(BJ)+/ but no
integers /ﬁ,) éz"'ffr can be found, then we are in case 7). The

examples discussed in the next section will illuminate the situation.
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3. Examples
A) Let A=B be the (7,3) code generated by
1001110, 0100111, 0O0l1101;
it is easy to check that wiAi=#%, €A, =/ and blA,=h (A= .
Suppose we send the zero matrix (=zero element of AB, which is a

(49,9) code with 4r(AB) =/ ) and we receive

rooooooo"
00 00 0 0 O]
oooooooi
E=101oooo§
001 00 0 0}
i1 0100 00
Lo o o0 0 0O

A, AL A AL,LA5A6A

Step I has to be applied as follows:
J=1 1 XD /7'(]) = =/
J=22 5(,2) 7(-(./‘ = O

J=3: Bs) gives the new third column
1

O = o= O O

and 7(3) =/
RS ot)gives 7(.3) = O,




©
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We thus have to apply Step II to

[0 01 00 0 0 B,
0000000 B
2 *
0 00000 O By
E'= |1 01 00 0 0 B,
0010000 B,
1 010000 By
L0 0 0 0 0 0 0] B,

Notice that Step I has increased the number of errors! We are in case ﬁ)

of Step II: Bl’ Bh’ B_ and B6 have errors, which form correctable

5
configurations only in B, and BS. Thus subcase 2). But 6 =T =/
that is ¢+ T = 2 =c(B)+/ . Accordingly we correct errors in B1
and B5 and change !
Xer X,, since ,7,(/) ==/
Xys , X, since 7(3): S ,7(.5> for j # 3.

This yields obviously the zero matrix. Why do we change the elements
of Bl& and B6 in the first and third columns? We know, since 7(4)—_-—/,
that after Step I there are still errors present in Al; and we know now
that there are errors in Bh and B6' Thus the intersections X,;, and X,
are singled out as probably in error. But if only these two terms
would be erroneous, we could have corrected them in Bl& and B6:‘ hence
these two rows contain further errors. 1In all other columns we have
(after Step I) an element of the code A: which to choose? By the
maximum likelihood principle, the one (or those) in which we have made
the greatest number of corrections (in this case, one correction).
Hence we change Xy43 and X.3 .

The mext example will illustrate this idea again.
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B} Using for A and B the same codes, assume we receive

[ ]

000 00O0T1 1
01 0101 0] *
0001000

E= (0 0 0 0 0 00
00100 00
0000000
0101001

Step I yields
[0 00 000 0]

0101 00 0
000 1 00 0

E'=/0 00000 0
Iooooooo
000 O0O0O0O
L0101oooJ

with /7('):0, ,7(.2.):— R 7(3):/ s 7(9‘):—/ s 7(5'):0 ) 7(6) =,
and 7(7}:,,2, . Notice that the errors of E in A6 and A7 can be corrected

since they are cyclic bursts of length = b.(A) . We find now that B3

has correctable errors, but B, and B, have errors we cannot correct.

2
Hence again we check ¢ and T : 7(—0: 7(#)-—'—/ , that is =2 .

Xz% ’

T

Since ¢ = €(B/) +i , we correct the error of B, and change X,

2 )

3

X7, , X3, obtaining the zero matrix. Here we disregard Ag and A
because ¢ is '"'large enough': we do not need to assume that we have
made erroneous changes in Step I.

C) A third example with the same codes will illustrate the

correction of cyclic bursts. Suppose we receive
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L
m
n
= O O O O &=
S O o O O O =
o O O O O O o
- O O ©C O O =
= O O O C O =
©c O O O O O =
= = O O O O =

After Step I we obtain

m

it
= O O H O =
o O O O O O O
O O O O O O O
o O O O O O O
o O O O O O O
S O O O O O O
o= O O = O =

The (J) are easily written down, but are not important since now
4 y p) P

Step II 3) 1) applies to give at once the zero matrix.

D) Assume now that A is the (4,3) code of all the sequences with
even weight, and similarly B is the (5,4) code with M—(B):-?. .
Then AB is the (20,12) 2-dimensional Hobbs' code. We have
e(A)=e(B)=b(A)=b(B)= h (A)= L (B)= O.

Suppose we receive

0 0 0 O »O—
1 1 1 0o oOf .
IO 0O 0 0 O ’
LO c 0 0 O

we obtain 0(/):,;(3):7(3) =~/ , the others being = o

And ve detect errors in B,. We cannot apply Step II 4) 2),
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because now ¢ =3 > €(BJ+/ =/ .- Thus, we reject. And

this is in proper order, since we would have had the same
] )

45 and same detection of errors in the B. S if we had

received, say

foo1 100
1 0 0 0 0f
o 0 0 0 o
|

000 0 oJ

Finally note that by our rules we would accept the matrix

(01100
JO 0 0 0 ;1
0 0 0 0 O0j
1L oooo—JE
because of Step II =) . But in this connection see Theorem 2
and 3 below.

4. The Main Theorem

In order to simplify the formulation of our results it will be
convenient to adopt the following notation and terminology. If E is an
error configuration (that is, a matrix giving the difference between
what was sent and what has been received), denote by E; , J=/ 2, »(8)
its columns: Ej is then the configuration of the errors belonging to

A, . We shall say that E; is A-correctable if it is correctable as
error configuration in A;: A (see end of section 1). Finally, we
will call a set E%, ES‘)'”) E% B-correctable if the sequence
(o, by, ..., by y)with by =bj =... = bj,=/ and bj=o if 4 Jr
is correctable as error configuration in B. This terminology can be
illustrated using the examples above. Thus, in example A), E1 and E3
are not A-correctable, although the decoding rules for A will operate
on E3 as indicated: but E. is not correctable since it has more than

3
e(A) errors and is a burst longer than b(A) or b.(A) . 1In this
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same example, the set El’ E, is not B-cdrrectable, for the same

3
reasons. 1In example C), El and E7 are not A-correctable, but their
set is B-correctable, since (1,0,0,0,0,0,1) is a cyclic burst of

length-= b (B).
Theorem 1

The decoding rules given for AB correct every error configuration E
satisfying any one of the following conditions:
1) The set of E; which are not A-correctable is B-correctable;

2) The number of errors does not exceed
= Lea)+1J[e@)+1]+ c(A);

3) E is a burst of length not exceeding

A= max(bryn(B) +b (8), <(A)n(B)+e(B)r/);

L4) E is a cyclic burst of length not exceeding
A = max{lpc(A) n(B)+ R (B), e (A)n(B) + e(B)s/§.

Even before proving this theorem, let us remark that M(AB):M(A)N(B)
and thus, under our assumption, e(AB)=(e(A)+/Xae(B)+2) -/ ;
if C(BS:O we have then €= c(AB) .

Corollary 1.1 If e(BY=o , or equivalently if w(B)=2 , the
decoding rules given above for AB correct all configurations with at
most e(AB) errors.

The proof of the Theorem if E satisfies 1) is straight forward.
After application of Step I we will be left with errors (original or
newly made) only in the non-A-correctables columns, say, E:,', EJ:.) s Ejp
but by assumption these form a B-correctable set. Hence Step II oL)
or Step II @) 1) will apply. Thus all errors will be corrected.

Notice in particular that if all E; are A-correctable, then the correction
of E is already performed after Step I.
Consider now case 2). If at most €(B) of the E; are not

A-correctable, we are back in case 1). Thus we can assume at least

)
c(®)+! non-A-correctable E)-& . In each of these, then,there is at least
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e(A)+1 errors: because of the value of & , this implies also that
there are at most, and thus exactly, €(8)+/ Es’s which are not

> Eja-) E{’: E{z:’,,,) Ez.

with ,%(Jl):—‘/z(d‘z_):”' =/7(J‘¢-)="'/ 8nd %({t)>—l - If d":c(B)-/-/)
and thus T =o , Step I followed by Step II 4B) will correct all

A-correctable. Let these be Ejl’ E;,, ..

errors. In fact, after Step I we will obtain a matrix E’ with ones
only in the columns J’).‘)“, ., )‘o“ . Since 6= e(B)+/ , each row will
contain at most C’(B)+/ errors: we will thus detect them all and be
in Step @)1) or B) 2). This reasoning can be applied also if Ts#o,
provided we show 7(if)>7['l) for all J # f,) 75:.)"') f'v . We will even
show /7(‘£¢,)>Mwhere w denotes the number of all the errors of E not

contained in Eg') E.Sz)'-') E;J) E,el) e, E‘fc . Let £ be the total
number of errors in E, ,Zo the number of errors in EJ:' EJ‘L’ ey 5:,
and Zﬁ the number of errors in E,‘ee . Then ,é’:)n,u,é‘,«-i,lé < & and
A, = e(A)+/ . Thus, for a fixed *,, we have
L+ > 4 = cg8)lea)r ] = €c-[a e(A) +1]
EAE, _
or '

ReA)+r2 -+l + Z 4 =)
txt, €
On the other hand, ,4__./-7_({; )z rCa) (for any code A, the number
£é of errors present plus the number 7(&) of changes made is at least
w(A) , if the changes do not reproduce the sequence originally sent);

thus

7(7&.)3 wCA)—/éé‘ = 2e(A)+2-[l-m-¢ —téfojé [=

Z Rel(A) +2 ~&+m+ 4 +tzt,€£2 mEl > m.

This terminates the proof of case 2).

For case 3), remember first of all that by definition of product
code, the order of transmission is "row-wise', as indicated in section
1 above. This implies that X¢; will be the [(c‘—/)n(rs) +J]+h term
sent. Let E then be a burst of length at most /3 » starting at X;;
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and ending at X,

Llu-idnetrpar]-Lc-dn@a)rile) = (u-clniplear-isri= 3.

Thus, if 23 .—:L,(A)n('&)#l;c(s) , there are at most bc(B) non-A-
correctable El’-,s which can be easily seen to form a B-correctable set
(cyclic burst). We can thus apply case 1). If now B= €(A)n(B)re(8)~+/
there are at most e(B)4/ non-A-correctable E')".S : 1if less than

e(g) +/ , then we are again in case 1). If exactly c(B)f-/ , they
will yield either 4(s)=—; or «(j)Ze(A)+/ , since each such E;

has weight at most e(A)+/= "“’('4)/2 . But each of the A-correctable EJ'

has weight at most e(4) , and thus Step II ﬁ) 2) applies.

The proof of case 4) is similar,

5. Further Results

A deeper analysis of our decoding rules gives the following theorems.

Theorem 2 In the presence of &+#/ errors, it is possible to obtain
and accept, after application of the decoding rules given above, ‘a
matrix which is not an element of AB.

In other words, the checking equations may fail to be satisfied after
decoding, even if the rules specify to 'accept", provided there are more
than & errors. The proof consists in giving an example of this situation,
for arbitrary codes A and B.

Let b= (b, k;_) o L’n(s))be an element of B with «~(6) = ur(B) in
which by b, ..., b, :
exror configuration E such that EJ is a column of zeros if J#% J
and E_:)‘.—. EJL—:- s o= E‘;c(a}_'_z’
of exactly e(A,+: errors (such a configuration exists because of the

definition of « (A) ). E has then [e(A')+/][€(BJ+,L]= Er/

are the terms equal to one. Consider then an

15V Jc(B)f.z.
is a non-A-correctable configuration

errors. Step I will require no changes and give 7(J')= 6 or ,;(J’J =~/
Step II /3) 1) will apply since in each of the €(4)+/ rows with errors
we can obtain the sequence b by changing e(B) terms. The matrix so

obtained, however, does not belong to AB since the columns are not

-10-
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elements of A.
This situation can be easily corrected:
Theorem 3 Suppose the rules for Step II are modified to require
acceptance of the decoded matrix only if
1) 7.(.,')>—/ for all j , in Step II o)

2) newly computed checking equations for each AJ are
satisfied, in Step II ) 1) and 2)

3) newly computed checking equations for each B; are
satisfied, in Step II 4./ 2).

Then no matrix will be accepted if it is not an element of AB.
The proof is obvious and will be omitted.

We can improve the correction of bursts, without modifying the
decoding rules, provided in A no burst of length big) +/ [or thA)fl ]

is "wrongly corrected':

Theorem 4 Assume that in A each [cyclic] burst of length buA, #/ [é(ﬂ/f/f
is A~correctable or belongs to a coset containing no A-correctable
configurations. Then the decoding rules for AB correct any error
configuration E which is a [cyclic] burst of length not exceeding

B=bAn(e) + max 1k (8), el e} [3 =b(A)nd)r maxfhcey emsi ],

If /5:b(A}mB/ +h (B, [/5(_=br_(f3ranB)/— 1%(8)] this theorem is
contained in Theorem 1, and there is nothing new to prove. Suppose thus
= blAInlB) + elBs +] [ﬂL: bCLA)n(B)J-e(B)J-/]. Following the
reasoning given in the proof of Theorem 1, we see that now there are
at most €(8,+| mnon-A-correctable E;)S , which are all bursts of
length b(4J+] . Because of our assumption, we have now ??(J) ==/

and thus Step IT (3, 1) or II s, 2) will apply.

Consider now the code BA. For its elements we may take those
of AB, but the order of transmission is now di fferent. Instead of
sending a matrix row-wise, we send it column-wise, so that x;; will
now be the L¢ +(j~an(B)]+% term. If we apply the decoding rules given

above, the first two statements of Theorem 1 will still hold true, since

=11~
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they are independent of the order of transmission. In particular

it follows from Theorem 1, 1) that we can correct any error configuration
of BA which consists of several bursts, each of length at most Eh(A),
provided any two consecutive bursts are separated by at least n(A)-A(AJ

correct terms.

-

Chapter II

Application to Hobbs' Ccdes

1. Preliminaries

The decoding rules given above can be used with codes that dre
products of more than two factors, by convenient iteration. Moreover,
the formulation of those rules can be simplified if the factors have
particular properties. TFor instance, if e(B)=¢ the statement of
Step II g) 2) becomes much simpler. In this chapter we will explicitly
give the decoding rules for § -dimensional Hobbs' codes, which are
products of § factors. We shall use the notation of Kautz \<f(n,,n1)_,v MS)
to denote the § -dimensional Hobbs' code (w,wn, ... Ne, (n,n)(nl-l)...(yk —/)).
Remember that (see [6])

5
w(‘R) (V\,,Yh) .~~)”s))" 2 )

~
1
)

Y
e (R (n,myy o, b)) =27 =1
5 ( ) (k¢ )
b (R Cnyny, vy ngd) = b OK (numy, v, mg)) =
=h3h+... hs+h¥hs..,hs+'~ +Y)$+/.

3
It is also well known that K|(n Y ,)ms) is the product

v Ty

|
K (n) k:(nA)... K:(ws) , with the factors taken in this order® An

~12-
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5
element of k" is thus a sequence of the form

<’{n Moo Auiige ;0 e xu---ms/_
X)I..-Zlg )’,,,.,24) . PR K”.”;LV):)
X . X X ,
4)\(\1.‘ V’é—l » ”:”’z."'”&-,z) - PR V)'V\J‘... V)S-l ﬂs J)
in which the %™ term has indices 11“ £, ..., vg satisfying
U o= e, L etk 6 ® P oo
“ ) +\Lé-; 7y Y 8 gas # (‘/ S hé-/ .

For some j~ with /= ¢« & consider now the set of those sub-sequences,

for which ¢ = . e, e = ot re given values. Thi is
i e " ey s  are given values. This set is a

subcode of dimension $ for which we shall use the notation
A

K,F\"h,--;, Yo, A g s 1t 1s obviously isomorphic to l<,s(n,, sy e/
We can clearly obtain Vl‘.ﬂ Ng, o0 Ng different such subcodes of
dimension £ . ,

This structure of K,8 suggests that theorems for this kind of code
are best established by using induction proofs. That is why we consider
now also (,+// ~dimensional subcodes

St st
k] A

/,
isomorphic to K, hy, ., h

Do Mey s A, s, ol;) (e

£ \ v,
= K (0, ned e Kb ).
Up to isomorphisms, then we can write

‘ﬁl, K(‘, . )
N Un oL = ,kn”...)hf)- L3°+,J B 2t g

!
v e Y s Ag )
v, .
k’.(uu, o bl e, b Reg, s, Hg
where the L;- are fixed integers. This decomposition will be used in
applying the decoding rules of Chapter I to obtain a decoding procedure
E)
for K

1

»

Ind

2. The Decoding Rules for k',s

We will have & major steps: step number §£+/ applies to all
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LN .
one-dimensional subcodes of type K, (¢ ,%.., vp S Mey 5 Fsgn seres Fg
We will again have a counting function 4 which associates to each

$ - . ;
L M G RN he s ofj.H}.,.)oLS) an integer "7“"1’4-/)"‘2 g /e (Observe that

the parameters ¢, e,y ¥g uniquely determine the subcode

5 v )

K, ARUPEERNR ] SELS W ST Xy Iy
To compute (G, -, s ) in the steps below will mean:

77

sef T 6"5’)='/ if there are integers ¢ s, J+# J , such that
,?h(c'l:«,ﬁ”, ,,.),,z_s)z,?_(i) Aery 5ot ,,k:)z—-/ 3 otherwise set

A4 . .) =3 b X, ; F

,?( for s s 4g?) €qual to the number of terms G o, of the

originally received sequence which differ from the corresponding terms of

the sequence obtained after application of the first g steps.

To compute the checking equit‘i/on in K,‘(LI'J e } i e, dﬁe’,’ ey °‘s) will

mean to compute, moduleo 2, 12__5-0 Xipo o f otgy, .. g 3 1f this adds to

one, wz detact errors.

Step I Compute the checking equation in K"(”ni X, ,,45) for al‘l

T A T P A R o ‘
L) HNo errors are detected in Kl(n,5 Xy yriey Ay ) : set y(o/‘,_,..,)d;)=0.
/él) errors are detected in K:(y)l} Ky, L) : set 7(0&),,,/ 9(8):_/,

It is easy to recognize that this is Step I of the previous chapter,

L es ).

. 1
incorporating the assumption A; =K, (n; o« ..

Having applied step # , we apply:

' ’ .
Step £/ . Compute the checking equation in each K| (b,,,.., o Mo, s T J:))
for all "'r =42 .., , r=ih. p and all A dy 2, 00, Py 0"=f+2.,.-.,3§ : |
: |

I . :
«) No eriors are detected in any K, (¢ ..., ¢p; Hp, ; Aapyarens %

compuie ’[,f'( o(f_“_ S o{:).

. e :
A) errors are detected in K, (€5 Cp i Mpy s Appa sy Ag)
for P=1,..., A 5 and there exists an integer J such that,
for all 4, # J

) \ ' N
.:—f(d;'?(f,%,,.,‘, 0(5/> 7,.[6r+/io(f+2_]...)o<£)__o
or
7('4—@/"04»?*2-/""""5) >/Zi“[") "(f,c-zz"'J""g'):——/:
Change LN te d Ayt s for V= /... £ and compute

/{3.(5(5—'/'&"‘.’ DCJ).

-1k
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¥) in all other cases: set ’?"("{H:,.J cee, x;):—/.

We can recognize here Step II of Chapter I, formulated for

¢
A = K, Chyseos Newr 5 Aoy e

product structure of Kl-"" and the relation e(B8)= ¢ have been utilized.

’J"‘)S) and B=X, . In particular, the

The final step is very similar to Step II of Chapter I.

. . . ! . N \
Step § Compute the checking equation in K, ("/:"-; o, % ’7;) for all
bp= LR, e, =2, .., S—l.'
o JNo errors are detected in any K\(L“,.,)és 5 ”S) and
7_(4'8)_.30 for all Lg ! accept, -
)errors are detected in K (L:f.,,.,,)b'(g_,;,; hg)‘ for v=1,..., 4
and there exists an integer J such that for all {5 +
/;(D >/21_[¢;)3 ) or 7(65)77_(_;):,_/;
Change x’:i»"'{’Cs—;)rJ for Y=, ..., L and accept.

,)‘) in all other cases: reject.
Before discussing the performance of these decoding rules, we give
an example in which the corrections in all the different steps are carried

out in detail.

3. An example

Consider KT (3,3,3,4): it is a (108,2k) code with wr =16, e =7,
b= Y = 17. An element of this code is a sequence {X;I A a”‘ 5’ with
4 =1,2,3
¢3=1,2,3
¢y = 1,2,3

ty= 112)5’h'
Assume we receive a sequence in which the non-zero terms are

tER R (1)

x

X3 (3)

fs (®)

X 32 (10)
%3322 (102)
X 32y (10k4)
TPy (105)
* 5323 (107)

~15-
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The numbecs in parentheses give the position in the sequence.

Since not two of the x's belong to the same Kté‘“l}"z;z Ay, ,g")

(no two have the same last three indices), Step I

for all values of the oLls, but for:

gives ,«ah(qu) o<3,.(f)= o

e (1,1,1) = -1 4(3,2,2) = -1
4.(1,1,3) = -1 4 (3,2,4) = -1
4 (1,2,4) = -1 4(3,3,1) = -1
4 (1,3,2) = -1 4.(3,3,3) = -1 ,

1
In Step II, for <=/, dy"/ , we detect an error in K\(\-J 3; I,/))
namely x;,,;; moreover, we find xj,(l,l,l) = -1 47({2, 5, 1)=0for & # /.
Thus, by II 3) , we change Xy @nd compute /T(l,l) = 1. For &%, ,=/, &, =2,
we detect no errors in any K, (4; &; 2,2); and since /?(é) L2)+ -/,
we set _47(/,1}:0 . For 043:/’ ody:gz/, o!.a: 2‘) q% =/ od.s:_—z) 0<’:3 .
and = 3, a(’,%__-l-/ the situation is analogous, yielding zero for the
corresponding values of Mo . f
The cases of =/, oby= 3; za, N, = 2 Ly = B, of, =/
and o(3=3)o£6‘= 3 are similar to the first case considered Cog—_- Xy =s)

Gl
0

3)0(“:

N>

They all yield 1 for the corresponding value of 4 each requiring the

correction of, respectively,
%1135 *¥33005 *¥33913 ¥11305 ¥3333°

We have only to consider now, always for Step II, the case o =2 and o, = ¢,
Here we detect errors in K‘I (1:3;2,4) as well as in }<,l (3;3;2,4). But
we cannot apply II f3) since we have /'J,,(l,E,lL) = -1 as well as
“+ (3,2,4) = -1. Thus we ave in II ¥ ) and set /}(2,4) = -1.
After this, we have a sequence with only two non-zero terms, namely

and x To this sequence we now apply Step III.

3324

1
If o - ¢ we do not detect errors in any K, (¢ ¢ . &, « )_moreover,
4 VX% 2 T YT

43,_(0(3)0{%);6—-/ if Xt ¥, thus we compute 4 by determining the number

#1124

of terms x which now differ from the original omnes:

4 &y (‘3°(:,<

‘3,(1) =2 ?(2) =2 7«(3) =2,

-lt_;-
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Lf o, = # , we detect errors in K',(I,/3 8, #) and K,I (s, 3; 3, 9‘).
Also 7_(;,2/1/):44?_(63)4/) for LA 2 Thus we change Xl,l,E,h and
d set ) = 2. -
%3 5 5 ) and se /2‘( )
We have now the sequence of all zeros [and 7(01)4)?-—/ for all &, 1s

thus Step IV o) applies and we accept.

4. TFirst Results

The following notatiou will be useful. If E is an error configuration
( that is, a sequence giving the difference between what was sent and what
has been received), and if p < § , we denote by E (‘*fH s #5) that
subconfiguration which belongs to \’\’,?(H,,.-., Be ; By svers dg) s if

$ =&, we shall set E(abs, ol )= E . By E¥ we shall represent

YIPRARY
the error configuration present after step number § (that is, that
sequence which gives the dfference between what was sent and what

is present after step number £ ); similarly for Ef(o().ﬁj cery ”Lg).

If by ¢ we denote the configuration of no errors (the zero sequence),
the decoding will be successful when ES:: + . If, finally) Xy denotes
an element of any K,? , the decoding will be successful or leave
undetected errors if E° = Xs

The following lemmas will help prove our theorems below and, at the

same time, will clarify the operation of the decoding rules.

Lemma 1 TFor any error configuration £ and 1= ¢ =8 , the following

two propositions are equivalent:
¥
1. Et (O(f*.l’,...)"ég): X?

2. %(o{f,_/,'.-.) S)EOif 548 ; step & requires
acceptance, if p= 8 .

Notice that step © requires acceptance exactly under those circumstances

under which any previous step yields /jio. Thus we may omit the

distinction between ¢« & and s =& . The lemma is trivially true for

e=1 - Let us then assume it for @ and prove it for $+/

-17-




PARKE MATHEMATICAL LABORATORIES, INCORPORATED 7493-SR-6
ONE RIVER ROAD » CARLISLE, MASSACHUSETTS

- S+ . st
Suppose first that E (okf"l;,_.) o(£,>:: Xfu . PIf the (g#/) step
did not require any chanses, then already F° (c'ﬂ/; Rppgs o s s )= Xe
for all [y =02, i, Np, thus by induction assumption ,7_(45,”) gy s oyl )z o

and by the decoding rules ,7,(0{3,“_ y . ,}olg)Zo. If we had some changes
in the (f-,«})ﬁ step, by definition e (045,7‘7_),,_) 9(5)20-
The proof of the converse is not as simple. We first assume to

have obtained ,(7_(0/,, . 94’5_)30 by applying case ) of step at

SFa e
1f 7(5#/)04;&2 9,,_)‘,&)30 for all o'ﬁ‘_/ , then by induction assumption
g’ . .
- ; and sinc o err e detected
E ((3-’4—/;--‘)3’5)'— Xe ince n ors ar ected in any

L . 1 _
K(i,..., Co s Mg, 5 %y 5o 945), clearly E (°45’+z>"') Az )= Xe,, -

If /7,(5}“9 Ay 3 vney g d==d for at least two values of then

‘:f’-/-/ ’
by definition ”7("(&;9"') 9(5)-;—/, contrary to the assumption. Thus,
the only case to consider is ’j‘(‘)) Az s, o(é.)zn/) }(‘ﬂ,;”‘_mz:“-) Ay )2 o

if ("j’f/ # J . By induction assumption E”((jﬁ/) Apn s

. B . P, — .
¢, # J and E (.)Joaﬂz e 045)74 Xf. Moreover tP(‘rﬂ;“ﬁz, ) ,,(é.);é &

o<§)= Xf if

for some ¢, , say ¢, = zf”fw . 76/" : otherwise we could not be in
‘ = FFCL.
case o) of ,step pes - Let Xfl(_. =ET(Z., gy s s ",;) and .
denote by XS(_- the sequence obtained from X, by changing the (pe))®
/ N 7
subscript from %g to J Xy(_- is thus an element of the code
$ : ’
K' (”,,...)}f)g} J)' o(f+2_),,,) o{S),
Set

Y
) ey '
E (J)°<.f+z)“')”<r)'"f (')1 Ko 5000 9{5)+dZ=—IX£C

é

—f -

5 . Y= £E (4, ‘ v
o (’ib) odj,_!_z).,.)a{s)"'f (i“) df#Z)"')dF/\';‘X.?)é:

—p, . =5 . .
E"lca,, dnys ...)04;);-“1" Copr)) clppn ,ioes g d= P Loy # 4 £ -

- -
The union of these £  is an error configuration Ef("{mz,...) "(S)

which differs from EP(e(#L)._,) °~’g) only by the addition of the x;. U X

Fi

KA

. 5 s 1,
which are elements of Kl (n,),_,, Ver, 5 HRgpp oo 045). The two error

configurations are thus not distinguishable, and case ) of step £5+/
still applies with ,cz;_(oqf”_,,,,, ol e )2 ©. But notice that in each

f7. '
K:(“n" P ] h

orp ) "45:,12_)“‘/ ocg) we have exactly one term in common

. .P . . . .
with ¥ (h.)---) Ng 3 O3 ol seer) DAS) . Since this subcode and only this
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Nes Cou s AL

reach a contradiction. Hence yza,(.\} Appy >0 g Y= -/ is not possible.

25 .
subcode among the K| (n,,... d;) contains errors, we

2

Assume now to obtain ,{j_(o( el )2 o by applying case ﬁ’)

T2, 2"
of step px7 . The two alternatives of this case can be now formulated:
. . RN
there is a J such that E (of*, s g s
- . 4 S+ sy :
for ¢, # J and ETHCS, ey, L., otg ) # E-(djvo(mz_,,.., ) with
the two possibilities E¥(y, opn s roes s ) = Xe or # X¢ . In either

-P ..
e e BT, s ke, s s )= e

alternative we can proceed as above in case ) to show that necessarily
R PrL . P/ '
the union of all the F (‘j’+/)°‘.\’+z;"'2 o(€> , that is, E (o(,*zj,..,o(g),
form an element X§+) .
We shall say that ,j,,(oeﬂ_,;,“) 048) gives a true value if either
£ —
gy, sy dedm—t 0T EF(otg,, oo, s ) = b

We have then:

Lemma 2 If, ’?«(‘J.“w) Koy p 5205 dg) gives a true value for all
C$ps =4 2, ..., hg, , then so does also /2"("(3‘4-2_: ey A ).

1f "j'(""fﬂ-)"‘/ . )=-7 , there is nothing to prove. So assume
ljﬂ(o(f““_,.,,) PR We have two cases. Either all 7(}}*, P
or exactly one is equal to -/ . 1In the first case, by assumption,
(e, ..

fortiori Ey+l(o(f+z’__,) )= ¢ . In the second case, case /3) of

L) = and thus also Ef(dﬁz,,,,) og)=¢ and a

step p+; applies to correct all errors present in E?(—o(ﬁ”_] oy ol ).

Corollary 1If, for some p, /=f < § , all AT o(g) give true
. 5
values, and if step § requires acceptance, then £° = .
In fact, again, step & requires acceptance in the circumstances

under which previous steps would yield A#Z @

Lemma 3 If E(dfﬂ S, 945) contains £= a?:“/ errors, A;-('3/9+,; see ) "')r)

gives a true value. Moreover, if £« <7 , then 4(dp,, .., = )2 O
If =/ the lemma is obvious. 8o assume it true for 7 , and

prove it for £+~ . Let then E(dr+1 Y =<5) contain at most 27 arrors,

but assume that ‘3‘(0\'}’“.7"'; a(;) does not give a true value. This

implies /a,(o(f*Ll...)-Ai;)aO and E?+l(o(9_}z_,...)o{s)7& P . By

-l Cim
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Lemma 2, there is | such that /7(J) ol o(;) does not give a true

.
20"

‘)
Zoand EFCH gy, inn, SPPE

value, that is ,%(J) Sy, Al 20

Then, by indt;cltion assumption, E (J, e P a(g) has strictly
more than g errors and consequently each E(‘.r+/=°‘r+z>"') d&-) has less
! . . . .
than % errors, for o # J . Thus either EP(L}»H, Hppp s T °(,;)= v
/
- . N £, _
or /f(°f+/: Rppy 5 1oy dg)==/) If E (Coprvotprs »err, o )= for
all "lﬂ/ # J , then step 5., corrects all the errors of E'P(J, Ay siin, o(s)
PR Pt = = H
giving £ ("f+z)"‘)°(;) - 76 ’ Or‘ggfj«(dr+z)r") HAs /= -/ : both
alternatives are contrary to the assumptions: If ,7,.(6_@_, s R s, Ag =/,
then only for ome value, say Z , of ("fu , since. /2(94_?7”_),,,) A;)Zo.

By induction assumption, then, E(ﬁ/ oA ) has exactly 27/

Frea 20 a‘i
errors; E.Coff“_,,,,) o(s.) contains then these 2/ errors as well as the
more than o/ errors of E(J ay,, ..., ogz) : a contradiction again.

We have now only to prove the second statement of the lemma.
Assume ,‘?(045,4_1),,,) D(E):_/ . If this is so because 7(4}”,&“2,,.,) “45):_/
for at least two values of df“ , we can apply our induction assumption

r
and immediately conclude that E(ag,,,..., ;)  has at least < errors.
Thus /7((.'5,+, 5 pis 5, d;)i o for all ¢, , but we cannot apply step
cos . Py

f+/,ﬁ).‘ This implies that E (éep s, Hppn 3100y d;)q&o for at
least two values of &'ﬂ_/ : by Lemma 1, these subconfigurations are
elements Xe , thus contain each at least ¥ errors. E(o(f“,.,,, o<5)

has thus at least ozf"’ errors.

-7
Corollary If E(o(x,ﬂ, e dg) contains less than 2 errors, then
A e e

5. The Performance

We can now prove our main result for Hobbs' codes.

Theorem 5 The decoding rules for Kf()ﬂ,, Py oo Y)S) accept only
elements of K\g(yw v hs) and correct every error configuration E
for which there exists an integer P,le p= b such that one of the
following conditions is satisfied:

;
1) Each E(oeﬁ,),,,)‘ 945) contains at most e (K, ) =
25/~  errors

-2
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2) p2 s and no E(:«l”,),,,)v‘,(S) contains more than 77/
er;.:olrs; and whenever £ (ocﬁl > Repn s °‘b‘) co)ntan:ls
2. errors, then every £ (5,  , o, ,.-, g with

. . i
Je,., # dﬂ_/ contains less than = errors .

3) $>a and each E(eg,,, ..., &) is a burst or a cyclic
burst of length at most b(kf) = PNy oo Npt Ny ore Np b b D )

Morecover, in case 1) and 3) all the errors will be corrected after step # ;
while in case 2), they will be corrected after step p£4/

An immediate consequence is:

Corollary The decoding rules for K;s correct up to the theoretical
limits c-(K,s) and B(Kf): L-;C(K‘S).
The first statement of the theorem is contained in Lemma 1. To prove
1), we apply the Corollary to Lemma 3 to obtain EF (.,4}.4_/) ey ;t;).: P
for all g, ,..., &g ; and thus Ef = ¢ and Ef = o,
Consider now 2). By Lemma 3 and its corollary, ECig, ote,,, ..., s )= P
S
. 0(8) giving E?H(o(,”_ s o(s.>= @ for all «

Thus step g/ will correct all the errors (ifn any) of
I
E (dffl)" Pra 2o g

Let us now prove 3), under the assumption P= 3 . If each E(o%’,,,) oi.g)

is a burst or a cyclic burst of length at most n-a+z , every E(ég, Sy

2~/ ds)
contains at most =2 errors; and at most one of them, say
E(f),o(,c,...) olé.) will have exactly 2 errors. We can thus apply the second
part of the theorem. To prove 3) in general, we use once more induction
. $+1 [ .
on p . Setting K =K K' | by Theorem 4 we can correct in
. £
K,m (E* = o) any burst (cyclic or not) of length at most b(K, )y’fu +/
where, by induction assumption, b(KF) =Ny o Vo F N N gk e o+ D /.
8
In Theorem 5, which is now completely proven, we decompose K
into disjoint subcodes, all of the same dimension p . This decomposition
induces the decomposition of E into the E(o{f_'_l 5o °<r) of the
theorem. Clearly, we can decompose K, also in disjoint subcodes of
dimensions £ , £, , ..., 5y arer - If the corresponding subconfigurations

are denoted E, E,, ... E,, let us assume that the decoding rules,

%
when applied to K‘g” , yield Evy = < , for each ) . The disjointness

of the subcodes insures us then that, when applying the decoding rules to K,S;

01~
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Sv . §
we will also obtain £, = ¢ for all » ; and hence also E*= &.

We have thus established the following result, of which Theorem 5

can be cousidered as a particular, more explicit case.

H

Theorem & Let E be an error configuration in‘ K (nyy o, VJS) for which
%

there exists a decomposition of K| in pair-wise disjoint subcodes

K

rules for K,f” correct the errors of E belonging to it. Then the

] >

D=/ 2, 4., with the following property: for each » , the decoding

decoding rules for 'K',S correct £. B

5

For an example let §=5 and consider K, (n,, n,, n,, n,, h:)

with (arbitrary v, y, ) and =5, n,=#,n.=3 . For error

configuration E we assume:

g—!

at most 3= 2 errors with 5th index equal to / , that is in £,= £(/)

at most M= 02,‘3_/ errors with Uth index equal to / and 5th index equal
to & , that is in £, = £(/a)

a burst of length at most (=h, 4/ in £, = £z, 2)

! .
at most Z= .2 error in each Es+o4, = £ (et , 3, 2)

-1

3 )
at most 4= ervors in £, = £(# 2)

a burst of length at most 26 = 4,4, + 4, +/ in E,=E(3).

VA

5
In this description we have already decomposed E and K, as required

by the theorem. The subcodes are as follows:

£ o
= K, (B,n,, Nz, n, D)

3
kK, "= K, (ny,n,, 0,5 b2 )

$. 3
K= Ko nun,, s 2, 2)

'?3-1'&. =
K, = K, (n,)n,_)-o(_;J,a“z)

5

K, #K,Lh,,nz)najyj_,,)

%
K7 =k, (n,na,on,, Ny 3)

-P0-
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5 —
If we apply the decoding rules to K we will correct b“,E,_)...) £,
FA
after the second s::ep (,2,.—.5; = 0= ﬁ:) : in symbols é*"‘s = . ‘

3 Lol
Similarly EJ_ = EB = E; = & gnd E,"= E, = &.

-

©. Additional Remarks -

For short, let us call decoding I the one described in Chapter I,
and decoding II the one described in Chapter TII. Then we can say that
decoding II is essentially obtained by iterating decoding I thanks to

the relation

Kf(n,, Mayoor, Ng) = ( (( K, (n,) K, (n,_))k,'(ns))r--)m (ng).

Since the two decodings agree if &= .2, , we can also express their

]

, ) (an.d to K"(ns).' ) and

relation as follows. Decoding II for k‘\g (n,) Ny o Vrg) is obtained by

St
applying decoding IT to K, (n,, ..., ne
then decoding I to }(}S" n,ony Mg, DK (ngh.
Suppose now that we apply decoding II to K,Y(Vl,,... ) Y)J’) and

to h’igq)ﬁ(yy ng) , and then decoding I to their product

Spp? 70
I3 5- i
K Cnyy oo, e ) K A NN ng) , for some e, §-/ . Then Theorem 1
and Theorem 5 insure us of correcting only up to & errors, where
- - > -z, -7 S+
E= 2525 s 2™ = 2T 2T e e 2T

and similarly for the burst length /3
The remark at the end of Chapter I however suggests to apply
decoding II to KF(V\,, cee hr) and to K,S”r (Y)rH, cey VJ;) and then decoding I
to the inverted product Kf’r (e, s vy Mg ) K"(n,) cey Mg ).
This is equivalent to applying the decoding discussed above, but to
send the sequences of X%¢, .../ , not in the order described in section 1,

but in increasing order of K , where

. : : +
K= ¢pr (4, ~rdng + e =~ dngmg  #oe+Cesdne g, o0,

+f((,a'_-/) ’L("g,/”/)hs #+ (e, ”’)”8”;,, v Ny, ghf Ve , My -
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Under these assumptions we can correct any series of bursts provided that
\ . 4

each one has a length not exceeding b (K, ) and that any two are separated

by at least n,wz...\f)r—br correct terms., At the same time, an additional

~p~/

)
number of errors not exceeding o -/ will also be corrected.

-2k~
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